If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-22t+15=0
a = 4.9; b = -22; c = +15;
Δ = b2-4ac
Δ = -222-4·4.9·15
Δ = 190
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-\sqrt{190}}{2*4.9}=\frac{22-\sqrt{190}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+\sqrt{190}}{2*4.9}=\frac{22+\sqrt{190}}{9.8} $
| 2/5x+6=3/5x-1 | | (2x-4)(3x+9)(=0 | | -1/2k-3=10 | | 2m/4+4m/6=2 | | -3+5x+6=7x-4 | | 0.7(h-0.2)=0.6 | | Y=-16t^2+144t | | z(z=9)=1 | | -54=-v/5 | | 12+5h=66 | | -16(3p+4)=-16 | | w/5=-35 | | 7-2p=-p-17 | | 8.6-z/4.6=-1.2 | | 2a+6=32 | | 14+16k=5-2k | | 11=4k−-3 | | 0.4(1.5x-1)=2+0.75x | | 6m+4=10+5m | | -35=-x/2 | | 8.6-z/46=-1.2 | | 8(5x-10)=2(5+10x) | | X2=8x-16 | | -20d–10+18d=-8 | | y-92=6y+8 | | ×=x-20 | | -9x-15=-22-4x-48 | | 25x+4=19x | | 7b+12=8b+15 | | 20=(m+4)÷9 | | 2m+5=-1+m | | 3=n/3+8 |